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Abstract: - Geophysical cybernetics is a new research area that studies the geophysical processes and 

phenomena using cybernetic methods and approaches. A mathematical formulation of the problem of optimal 

control of the geophysical system is presented from the standpoint of geophysical cybernetics. Further, the 

essential features of the geophysical system as a control object are considered. The optimal control problem for 

the large scale atmospheric dynamics is considered and the necessary optimality conditions are derived. 
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1 Introduction 
The ongoing climate change, which scientific 

community agrees is predominantly a man-made 

phenomenon [1], represents one of the biggest 

challenges facing humanity today. For a very long 

time, mainly unwittingly, human civilization has 

been influencing the environment and changing its 

properties. Nevertheless, the current rate of climate 

change has no precedent in the available geological 

records or even in the known history of our 

civilisation. At the turn of the century, 

geoengineering, a new research and technological 

area, was proposed as an instrument to reduce 

global warming via an intentional intervention in the 

earth’s climate system. It is necessary to point out 

that many attempts and experiments to modify the 

atmospheric processes and weather phenomena have 

been made in the previous century. However, both 

geoengineering and weather modification are 

considered outside the scope of control theory. This 

gives rise to a number of very important problems, 

which are currently only formulated in general 

terms, such as problems related to the validation of 

the input and output variables, determination of the 

boundaries of both geoengineering activities and 

weather modification, statement of climate and 

weather manipulation goals as well as methods of 

achieving the objectives. Meanwhile in the late 

1970s, a uniform methodology for manipulating 

atmospheric, hydrological and other geophysical 

processes was formulated on the basis of the ideas 

from cybernetics [2]. In this monograph the concept 

of geophysical cybernetics was introduced as the 

new area of research within the control theory. 

Geophysical cybernetics explores a self-regulating 

cybernetic system, in which the geophysical system 

is the control object, and the role of the controller is 

given to human society as a whole. The geophysical 

system is defined as a set of objects of inanimate 

nature [2]. Thus, the main components of the earth’s 

climate system, the atmosphere and ocean, can be 

considered as subsystems of the geophysical system. 

Geophysical cybernetics, as an interdisciplinary 

research area, it is currently evolving on the basis of 

ideas and methods of optimal control theory, 

dynamical systems theory, technical cybernetics, 

geophysics, and other academic disciplines.  

This paper has two main objectives. The first 

objective is to present a general formulation of the 

problem of optimal control of the geophysical 

system considering its uniqueness as a physical 

object with a number of specific features. The 

second objective is to consider the control problem 

of large-scale dynamical processes in the 

atmosphere and to derive the necessary optimality 

conditions for this problem.   

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Sergei Soldatenko, Rafael Yusupov

E-ISSN: 2224-3496 116 Volume 11, 2015

mailto:s.soldatenko@bom.gov.au
mailto:yusupov@iias.spb.su


2 Geophysical System as a Physical 

and Control Object 

In the beginning of this section let us make the 

following definition: The geophysical system is an 

interactive system consisting of four major 

components: the atmosphere, the hydrosphere, the 

cryosphere, and the land surface, influenced by 

various external forcing factors.   

The geophysical system is very difficult to 

control because it is a unique physical object, which 

possesses a number of specific features:  

- The geophysical system is a complex 

interactive system with numerous positive and 

negative feedback mechanisms. Various physical 

and chemical interaction processes occur among the 

different components of the geophysical system on a 

wide range of space and time scales, making the 

system enormously complex; 

- The components of the geophysical system are 

very different in their physical and chemical 

properties, structure and dynamics; they are linked 

together by fluxes of momentum, mass and energy;  

- The geophysical system is also an open system 

but its impact on the external environment is 

negligible; 

- Time scales of the physical processes occurring 

in the geophysical system vary over a wide range - 

from seconds (turbulent fluctuations) to tens and 

hundreds of years; 

- Since the geophysical system is a global system 

its spatial spectrum of motions covers molecular to 

planetary scales;  

- Geophysical processes oscillate due to both 

internal factors (natural oscillations) and external 

forcing (forced oscillations). Natural oscillations are 

due to internal instability of the geophysical system 

with respect to stochastic infinitesimal disturbances. 

Anthropogenic impacts on geophysical system, both 

intentional and unintentional, belong to the category 

of external forcing; 

- Geophysical dynamical processes are strongly 

nonlinear and chaotic [3]. 

Certainly, geophysical system has a number of 

other specific features that make it a unique physical 

object, which is virtually impossible to study using 

laboratory simulations (with rare exceptions). 

Therefore, the main method of studying the 

geophysical system is mathematical modeling. It is 

important to note that the atmosphere is the most 

unstable and rapidly changing component of the 

geophysical system.  

With respect to the problem of control of the 

geophysical system, it should be emphasized that 

the application of cybernetic approaches and 

techniques developed for the study and optimal 

control of systems in many scientific areas, ranging 

from engineering and sciences to economics and 

social sciences, is very difficult. This is due to the 

following factors: 

- Geophysical processes are not sufficiently well 

identified as control objects; their mathematical 

models are insufficiently perfect, accurate and 

adequate; 

- The geophysical system refers to a class of 

distributed parameter systems described by partial 

differential equations, making the mathematical 

models of geophysical processes quite complex. 

Synthesis of control systems of such objects 

requires the development of control theory, which 

was created mainly for objects (systems) with 

lumped parameters (e.g. [4-9]). 

The formulation of optimal control problems 

includes the following: (a) a mathematical model of 

the geophysical system that describes its behavior 

under the influence of control actions and external 

forcing (disturbances); (b) a specification of the 

control objectives; (c) a control model that imposes 

constrains on the controls and the state variables of 

the geophysical system; and (d) specifications of 

boundary and initial conditions for the model 

equations. 

In our previous monograph [10] an optimal 

control problem for the geophysical system has been 

considered in a conceptual probabilistic manner. In 

practice, a probabilistic approach can be used for the 

development of control strategies on the assumption 

that the geophysical system is in a steady state. 

However, geophysical flows and processes 

occurring in the geophysical system and its 

components are non-stationary. For this reason, 

deterministic mathematical models are mainly used 

for numerical modeling and prediction of the 

dynamics and evolution of the geophysical system 

and its processes (e.g. [11-15]).  

 

 

3 The Geophysical System: a Non-

Linear Dissipative Dynamical System 
 

3.1 Preliminary notes 
Dynamical systems theory represents a very 

powerful framework for developing mathematical 

models of the geophysical system and analyzing and 

exploring time evolution of its components and 

processes [16]. In the most general sense, a 

hypothetical dynamical system can be formally 

specified by its state vector the coordinates of which 

(state or dynamic variables) characterize exactly the 
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state of a system at any moment, and a well-defined 

function (i.e. rule), which describes, given the 

current state, the evolution with time of state 

variables. There are two kinds of dynamical system: 

continuous time and discrete time. Continuous-time 

dynamical systems are commonly specified by a set 

of ordinary or partial differential equations and the 

problem of the evolution of state variables in time is 

then considered as an initial value problem. 

However, with respect to the geophysical system 

simulations, discrete-time deterministic systems are 

of particular interest, because, commonly, the 

solution of differential equations describing the 

evolution of the geophysical system and its 

subsystems can be only obtained numerically. 

Suppose that the current state of a hypothetical 

dynamical system is defined by the set of n real 

variables 1 2, , , nq q q . The number n is referred as 

the dimension of the system. A particular state 

 1 2, , , nq q q q  corresponds to a point in an n-

dimensional space  nQ , the so-called phase 

space of the system. Let mt  ( 0,1,2,m ) be 

the discrete time, and  1 2, , , nf f f f  is a smooth 

vector-valued function defined in the phase space 

domain  nQ . The function f
 

describes the 

evolution of the system state from the moment of 

time 0 0t  to the state of the system at the moment 

of time mt  
such that :  f Q Q . Thus, a 

deterministic dynamical system with discrete time is 

specified by the following equations: 

      

 

1 0 0

1 2

,   ,   

, , , ,   0,1,2,

  

 

m m

n

q t f q t q t q

q q q q m
       (1)                               

It is obvious, that the evolution operator f  satisfies 

the following semigroup property:   m s m sf f f . 

Therefore the system state  mq t  at time mt  can be 

explicitly expressed through the initial conditions 

0q   

             0 m

mq t f u ,                        (2)                                                             

where  0

mf q  denotes a m-fold application of f  to 

0q . The sequence   
0



m m
q t  is an orbit (trajectory) 

of the system (1) in its phase space q Q , which is 

uniquely defined by the initial values of state 

variables 0q  (initial conditions). The vector-

function f is a nonlinear function of state variables. 

This nonlinearity arises from the numerous 

feedbacks existed between the different components 

of the geophysical system, external forcing caused 

by natural and anthropogenic processes, and the 

chaotic nature of dynamical processes occurring in 

geospheres. It is usually assumed that the solution to 

the system (1) is deterministic, i.e. q
 
exists and is 

unique at a given 
0q .  

Mathematical models of the geophysical system 

belong to the class of dynamical dissipative systems. 

It is very important if we are interested in climate 

manipulations since dissipative systems, such as the 

atmosphere and ocean, possess a global attractor, 

which is a certain set in the model phase space.  

 

 

3.2 Dynamical model of the geophysical 

system  
Mathematical models of the geophysical system 

used for variety of purposes represent systems of 

partial differential equations based on fundamental 

laws of physics, chemistry and fluid dynamics. 

Model equations also take into consideration the 

specific properties of geophysical system as well as 

its cycles such the water cycle, the carbon cycle, and 

the nitrogen cycle. The model equations can be 

solved only numerically and, consequently, provide 

a discrete in space and time solution. 

Let  0, t T  be a bounded space-time 

domain in which the geophysical system is 

characterized by the state vector    , r tt , 

where  t  is the infinite real space of 

sufficiently smooth state functions satisfying some 

problem-specific boundary conditions at the 

boundary   of the domain , 
3 r  is a 

vector of spatial variables and  0,   t T  

is the time. The domain 
 

could represent the 

earth’s sphere, hemisphere or another limited area 

on the earth’s surface. In general operator form the 

evolution of geophysical system in the domain t  
can be written as follows 

 
 

   00

,
( , ), ( , ) ,  

         , ,









r
r r

r r
t

t
t t

t

t


 

 

              (3)                                  

where  is a nonlinear model operator,   is the 

model parameter vector, and 0  is a given vector-

valued function defining the initial state estimate.  

The space-time spectrum of the processes 

occurring in the geophysical system is extremely 

wide. Hence, state-of-the-art mathematical models 

are unable to realistically simulate all of these 

processes. Let   be a characteristic time-scale of a 

certain geophysical process. In this case, an explicit 
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description of the processes with time scales smaller 

than   is altered on a parametric representation (i.e. 

small scale processes are parameterized). Some of 

these parameters can be considered as control 

variables within the cybernetic framework. So, by 

varying the control parameters, we can formally 

control the dynamics of geophysical system.  

The state vector  ,r t  has an infinite dimension 

because the geophysical system is a continuous 

medium. However, in the control theory, state 

vector is usually finite-dimensional. In order to 

obtain a system which contains a finite number of 

degrees of freedom, and then to use the methods of 

control theory developed for lumped systems, the 

equation (3) is projected into the subspace spanned 

by the orthogonal basis  
1

n

i i
  so that  ,r t can 

be represented as a normally convergent series  

         

     
1

,


r r
n

i i

i

t x t  .         (4)                                  

Substituting (4) into (3) and applying then the 

Galerkin-like procedure, one can obtain instead of 

equations (3) the lumped system that is described by 

the following set of ordinary differential equations  

 
    , ,   

x
f x u

d t
t t t

dt
              (5) 

with the initial conditions  

  00
,


x x

t
t                           (6) 

where  x
nX  is the state vector the 

components of which belong to the class of 

continuously differentiable functions  1 , 

 u
mU is a control vector the components of 

which belong to the class of piecewise continuous 

functions  ˆ , and f
n  is a nonlinear vector-

valued function defined in the domain  X U

that is continuous with respect to both u and x, 

continuously differentiable with respect to х, as well 

as piecewise continuous with respect to t, such that 

:   f X U X , and x0 is a given vector-valued 

function.  

In the right-hand side of the equations (5), only 

control parameters are presented, while the 

uncontrolled parameters are omitted. We assume 

that control parameters depend on the state of the 

system, i.e.     ,u g xt t t , which implies that 

equations (5) describe a closed-loop control system, 

representing the geophysical system.  

Finite-difference and spectral methods are 

mainly used to solve numerically the equations (5).  

4 Formulation of the Control Problem 
It is important to note that the problem of optimal 

control of the geophysical system remains poorly 

studied both scientifically and technically due to its 

relative novelty and enormous complexity: 

- Geophysical processes as spatially distributed 

objects require spatially distributed control actions. 

However, implementation of such controls is very 

poorly developed; 

- Geophysical processes possess enormous 

energy potential. Implementation of comparable 

energy control actions is a very difficult issue. 

Therefore, the identification of sensitive points, 

which can be manipulated to produce the desired 

result, is a critical problem; 

- The scale and the huge energy of geophysical 

processes impose very strict requirements for 

accuracy and reliability of control systems; even 

minor errors in the control can be disastrous; 

- Processes occurring in the geophysical system 

are interconnected, so the changes in the dynamics 

of some processes can lead to uncontrollable 

consequences. This should be taken into account in 

the development of control systems for geophysical 

processes. 

The inherent features of geophysical processes 

provide possible ways to control them (see [10] for 

more details). The nature itself provides also the 

ability to design physical foundations for control of 

geophysical processes based on the existing natural 

physical mechanisms that influence the behavior of 

geophysical system.  

Let’s assume the system (5) is controllable and 

control parameters belong to a set of admissible 

controls  u U . It is important that the set of 

admissible controls  is defined on the basis of 

physical and technical feasibility taking into account 

the above-mentioned specific properties of the 

geophysical system as a control object. Further, 

suppose that controls belong to the class of 

piecewise continuous functions with values in U  or 

Lebesgue measurable functions with values in U, 

then, according to the the classical Caratheodory’s 

theorem [17], one can prove that the Cauchy 

problem (5) has a unique solution defined on a time 

interval in 


. However, we cannot a priori 

determine whether the geophysical system is 

controllable or not. Conclusion concerning 

controllability of the system can only be made by 

solving a specific problem.  

The main objective of the problem considered is 

to synthesize the control law that ensures the 

achievement of the desired results. Since these 

results are expressed in terms of extremal problem, 
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we are specifically interested in synthesis of an 

optimal control. Formally, the optimal control 

problem for the geophysical system is formulated as 

follows: 

Find the control trajectory 

 :  0,  u T U                     (7) 

and the system state orbit x* generated by u*  

 :  0,  x T X                    (8) 

such that the given objective functional 

(performance index) 
 

reaches its extremum 

(minimum or maximum) 

      

    

0 0 0

0

, , , ,

               + , , ,

 

 

x u x x

x u

T

t t T T

t t t dt extr
.           (9) 

with an integrand :  .  X U The problem (7)-

(9) includes a set X at which the functional  is 

defined, and constraints on the model state given by 

the subset  of a set X. Remind that the dynamic 

constraints are given by the equations (5). 

The functional (9) is a classical cost functional, 

which is commonly used in the optimal control 

theory, and corresponds to the Bolza problem. 

Problems of Mayer and Lagrange are special cases 

of the Bolza problem. The formulation of an 

objective functional depends on the problem under 

consideration and there are no universal approaches 

how it can be specified.    

The Hamiltonian function :    nH     
associated with the optimal control problem (7)-(9) 

can be written in the following form 

           

      

, , , , ,

                                    + ,

x u x u

f x u

H t t t t t t t

t t t




 

where   nt  is the costate vector.  

There are several methods available for solving 

the problem (7)-(9): classical methods of the 

variational calculus, dynamical programming, the 

Pontryagin’s maximum principle and other methods. 

 

 

5 Stabilizing the Geophysical System 

around the Reference Orbit 
Stabilization of the geophysical system around the 

reference trajectory in phase space represents a 

specific class of optimal control problems relevant 

to the control of geophysical processes. Stabilization 

of an orbit of the climate system to weaken the 

global warming is one of the examples of this class 

of problems. For this particular class of problems, 

the differential equations (5) describing the 

evolution of the geophysical system is linearized 

with respect to the natural (reference) trajectory 

x
e
(t) caused by external natural unperturbed forcing 

u
e
(t): 

 
   

* *
* *

 
 

 
   
 x x x x

u u u u

x f f
x u

x u

d t
t t

dt


   

with the initial conditions 

 
0

0

x

t
t , 

where δx is the perturbation of natural trajectory of 

the geophysical system due to anthropogenic 

disturbances, δu is a control vector to ensure the 

stabilization of the natural trajectory,  f x and 

 f u  are the Jacobian matrices. It is assumed that 

,      u u u u u
e e  , 

,      x x x x x
e e  . 

Then we consider the following optimal control 

problem: 

Find the control vector  

  u t  

generating the correction of the natural orbit 

,      x x x
e X   

such that the cost functional is minimized 

 argmin ,




u

u x u


   , 

 

0

1
( , ) ( )

2

1
( ) ( ) ( ) ( ) ,

2



 

 

  

x u x G x

x W x u Q u

T

T T

t t t t dt

   

   

 

where W(t) and G are weighting positive semi-

definite n n matrices, normalizing the energy of 

geophysical system per unit mass, Q(t) is a 

weighting positive define mm matrix, normalizing 

the energy of control actions per unit mass.  

The stabilization problem is solved, given the 

fact that the system travels along its natural 

trajectory that is subject to external natural forcing. 

The control goal is to keep δx(t) close to zero using 

control actions δu(t). The information on the 

geophysical system state x(t) is obtained by 

measurement devices and instruments followed by 

the processing of these information within the data 

assimilation system [18]. 
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6 Control of Large-Scale Dynamics of 

the Atmosphere 
In this section, we will consider the problem of 

optimal control of large-scale dynamics of the 

atmosphere focusing on extratropical wave motions 

having a planetary length scale. These quasi-

barotropic atmospheric waves propagate quasi-

horizontally and, therefore, their behavior can be 

simulated using the equivalent barotropic model of 

the atmosphere [19].  

 

 

6.1 Atmospheric model  
As a starting point, let us consider the vorticity 

equation written in normalized isobaric coordinates 

( , ,x y  ) in the following form [20] 

          
     

     

f f u v
u v f

t x y x y

 
, (10) 

where u  and v  are the components of horizontal 

velocity vector, f  is the Coriolis parameter,   is 

the vertical components of relative vorticity 

 
 
 

v u

x y
 . 

The equation of vorticity (10) is derived from the 

horizontal momentum equations and may be 

rewritten as 

       
  

   

f f f
u v

t x y P

  


,    (11)                                              

where we have used the continuity equation  

1
0

  
  

  

u v

x y P




. 

Here  dp dt  is pressure vertical velocity, where 

p is pressure, and P  is a pressure approximately 

equal to the surface pressure. At the so-called 

equivalent barotropic atmospheric level 0.5   the 

vorticity equation may be expressed in the form [19] 

   
0

   
  

  

f f fA
u v

t x y P

 
 ,      (12) 

where  A   is an empirical function used to 

describe the vertical variation of the horizontal wind 

speed, 0  is a pressure vertical velocity at the level 

1  (i.e. at the earth’s surface 0z ). 

The large-scale atmospheric motions are quasi-

geostrophic, therefore 

,   
 

  
 

u v
y x

 
, 

where  f  is the geostrophic streamfunction, 

and Φ is the geopotential. Rewriting the vorticity 

equation (12) in terms streamfunction yields 

 2 2

0,

    



fA
J f

t P
    ,       (13)                                         

where  

 ,
   

 
   

a b a b
J a b

x y y x
 

is a Jacobian. By the definition [20] 

0 0 0 0

0 0 0 0 0

  
    

  

dp p p p
u v gw

dt t x y
  , 

where 
0 w dz dt  is the vertical velocity at the level 

0z  ( 1 ), 
0  is the air density and g  is the 

gravity acceleration.  The subscript 0 refers to the 

level 0z . On the lower boundary the kinematic 

boundary condition requires that 0 0w . Further, if 

the geostrophic approximation is used, it follows 

that    0 0 0 0 0     u p x v p y . With these two 

conditions the value of 
0  reduces to  

0 0  p t . 

Substitution of this expression into (13) gives: 

 2 2 0,


    
 

pfA
J f

t P t
   .       (14) 

Suppose that there is a correlation between 0 p t  

and  t , where   is the geopotential at the level 
 , i.e.  0    cp t R t , where cR   is a 

correlation coefficient. Since 

 f   

then  

 0    cp t R f t  

and the equation (14) becomes 

 
2

2 2,
 
    

 

cAR f
J f

t P t


   . 

Coefficient 2

cAR f P  has the dimension of an 

inverse square length. Denoting this coefficient by 
2

01 L , we obtain the following Helmholtz-type 

equation with respect to variable  t :   

2

2

0

1 
  

 
F

t L t

 
,                (15) 

where  

 2,   F J f  . 

When the equation (12) is equal to zero on the 

right-hand side we refer to it as a barotropic 

vorticity equation. Thus, (12) is a forced barotropic 

equation in which the forcing term is determined by 

the vertical motion at the lower boundary 0 . It is 

known [18] that the natural forcing of large-scale 

waves in the atmosphere is mainly of orographic or 

thermal origin. These two effects are formally 

described by the right-hand term in the vorticity 
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equation (12), i.e. by the vertical velocity 
0 . Thus, 

the variable 
0  can be chosen as a control variable.   

 

 

6.2 Optimal control problem formulation  

Let   be the domain on the xy – plane bounded by 

 . We will consider in   the dynamics of large-

scale atmospheric waves. Hence, the horizontal 

domain of the model covers only part of the earth. 

Let 0[ , ]t T  be a time domain on which the solution 

of equation (15) is defined. Let the boundary curve 

  be represented in parametric form by the 

equations 

   1 2,     x y    , 

where 1  and 2  are piecewise continuous functions 

of the parameter   differentiable on the intervals 

where they are continuous. Assuming the coordinate 

origin coincides with the North Pole, we shall obtain 

cos ,    sin x r y r  ,              (16)                                                   

where  ,r   are polar coordinates. We set the 

following conditions on the boundary  : 

0





t


, 

then we get the Dirichlet problem for the Helmholtz 

equation (15): 

 

 

   

2

02

0

0

0 0 0

1
                in  , ,

0                                    on  , ,

, , ,               at   .

 
     



 


  



F t T
t L t

t T
t

x y t x y t t

 



 

  (17) 

Solving the equation (15), we get the tendency 

 t   at time t . Then we can extrapolate   in 

time using a forward difference 

   
 

    
 

t t t t
t


    ,            (18) 

where t  is the integration time step. Multiplying 

both sides of the forecasting equation and the 

boundary conditions by t , we can rewrite the 

problem (17) on the time interval  0 0, t t t  as 

follows: 

   

2

2

0

0 0 0

1
                      in  ,

0                                      on  ,

, , ,            at   ,


   


 


 



z z G
L

z

x y t x y t t 

      (19)                                        

where    z t t   and G F t . After solving 

the problem (19), we obtain the streamfunction ψ at 

the next time step, i.e. the forecast of geopotential 

field Φ, which characterizes the dynamics of large-

scale atmospheric waves. Note that the forward 

difference (18) can be used only on the first time 

step and then on the next time steps a central 

difference  

    2
 

     
 

t t t t t
t


      

can be applied. 

Consider the following control system on the 

time interval  0 0, t t t  with the state variable z  

and the control variable U : 

2

2

0

1
   z z U G

L
 in  , 0z  on  .      (20)                                     

The right-hand side term G  in this equation is 

calculated using the geostrophic streamfunction at 

the initial time 0t  

 2

0 0 0,     G G J f t    

where  

0 0 f . 

Let us assume that the control variable U  satisfies 

the following condition:  

U , 

where  is the set of all permissible controls. The 

control U , from a physical standpoint, is a measure 

of additional vertical velocity on the bottom of the 

atmosphere near the ground.  

Let us introduce a cost functional: 

 
2 2

0

1

2


    
  z z U d ,           (21)                                                

where the pair  ,z U  satisfies the equation (20) and 

0z  is the desired spatial distribution of z .  The term 

U  (with 0 ) is proportional to the consumed 

energy. The control problem is as follows: find the 

control U  generating the system state z  

such that the cost functional (21) is minimized. It is 

important to note that  is a set of constraints on 

the state variable z .    

The control problem (20) and (21), from a 

physical viewpoint, reflects the ability to manipulate 

phase speeds of large scale atmospheric waves by 

changing a vertical velocity on the lower boundary 

of the atmosphere. Thus, we assume that the system 

described by the Helmholtz equation (15) is 

controllable and control parameter belongs to the set 

of admissible controls U . The set  should 

be defined on the basis of physical and technical 
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feasibility, taking into account the properties of the 

atmosphere as a physical object.  

To solve the optimal control problem we should 

convert the equation (20) to a normal form by 

introducing new dependent and parametric variables 

[8, 21]. As a result we get the following equivalent 

system of partial differential equations: 

1
2

1
3

2
1

2
2

3

2

3

1 12

0

0,

0,

0,

0,

0,

1
0.


  


  

 



  



  
 

  

 

     


z
z

x

z
z

y

z

x

z

y

z

x

z
U z G

y L









              (22)                                           

Here the new dependent variables 
2z , 

3z , 1  and 

2  were introduced and the original z  being 

denoted by 1z . The state variables now are 1z , 3z  

and 3z , while 1  and 2  are the parametric 

variables, which play the role of additional controls.   

To obtain the necessary optimality conditions let us 

adjoin (22) to the functional (21) by introducing the 

unknown Lagrange multipliers 1 , 2 , 3 , 1 , 2  

and 3  

 
2 2 1

1 0 1 2

1 2 2
1 3 2 1 2 2

3 3

3 2 3 1 12

0

1

2
      

 

1
 + .



            

      
         

      

    
         
    


z

z z U z
x

z z z
z

y x y

z z
U z G d

x L y

 

    

   

Let us introduce the Hamiltonian function H   

 
2 2

1 0 1 2 2 1 3 2

1 3 2 2 3 1 12

0

1

2

1
     + .

      
 

 
      

 

H z z U z

z U z G
L

     

    

  (23) 

The augmented cost functional A  is then can be 

written as 

31 2
1 2 3



 
   

  
A

zz z
H

x x x
    

31 2
1 2 3

 
   

   

zz z
d

y y y
   . 

By introducing vectors  

 1 2 3, ,z z z z ,  1 2 3, ,     and  1 2 3, ,    , 

the functional 
A

 may be represented as 



  
    

  
A

z z
H d

x y
  . 

If we add and subtract the term  

  
 

  
z

x y

 
 

to the integrand of this equation, we shall obtain:  

         .





   
     

   

  
   

  





A H z d
x y

z z d
x y

 

 

              (24) 

By the use of Green's theorem, the second integral 

in (24) becomes a line integral, and then A  takes 

the form  

   2 1      .





   
     

   

    





A H z d
x y

zd

 

    

 

The first variation in A  due to variations in the 

control and parametric variables is 

   

1

1

2 1         ,





     
      

     

    





A

H H
z U d

z x y U

zd

 
  

     

  (25)             

where  1 1 2, ,U U   . We choose the functions   

and   to cause the first term in parentheses in the 

double integral in (25) to vanish  

  
  

  

H

x y z

 
.                   (26)                                                          

Since the function 1z  does not change along the 

boundary   ( 1 0z ), its variation 1 0z  on  . 

For 2 0z  and 3 0z , which are not defined on the 

boundary  , we require the relation  

   2 1 0        

to hold along  . Thus, taking this into account (16), 

we obtain the boundary conditions for the system 

(22) 

2 2

3 3

cos sin 0,

cos sin 0.

 


 

   

   
                 (27)                                                        

The first variation in A  then becomes:  

1

1

 
  

 
A

H
U d

U
  .                   (28) 
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Thus, a necessary condition for the extremality of 

A
 takes the form                                                 

1

0





H

U
.                           (29)                                                                   

Equations (26) and (29) with the boundary 

conditions (19) and (27) represent the necessary 

conditions for optimum. For the Hamiltonian 

function H defined by the equation (23) the 

necessary conditions for an extremum of 
A

 are as 

follows: 

  31 1
1 0 2

0

2 2
1

3 3

1

3

2 3

3 2

,

,

,

0,

0,

0.

 
      


 

  
 


    

  


 
  

  

z z
x y L

x y

x y

U

 

 


 


 

 

 

              (30)                                            

Thus, to find the control U that minimize the 

functional (21) we must solve the system of 12 

partial differential equations (22) and (29) with 12 

unknown variables:  1 2 3, ,z z z z ,  1 2 3, ,    , 

 1 2 3, ,    , and  1 1 2, ,U U  , and with 

given boundary conditions:   

1

2 2

0,

0.



 

 


 

z

 
                (31) 

This problem is solved numerically. Let us consider 

a particular case of the optimal control problem (20) 

and (21) in which the constant   is equals to zero. 

In this case 

3 2 0   , 

and the necessary conditions (30) for an extremum 

of A  takes the form: 

 1 1
1 0

2
1

3

1

3 2

,

,

,

0.

 
     




 



  


  

z z
x y

y

x

 







 

                (32)                                                  

Since 3 2   , the second and third equations of 

this system are similar to the first two equations of 

the system (22). Thus, we might make the following 

assumptions [8, 20]: 

3 2 1
1 1 3 2,    ,         

z z z
   

  
,          (33) 

where   is an arbitrary constant. These 

assumptions are compatible with the boundary 

conditions (31). If we substitute (33) into the first 

equation of the system (30) then we get: 

 
2 2

1 1
1 0

  
    

    

z z
z z

x y x y
 , 

from which  1 0 0 z z  in the whole domain  . 

Thus, the cost functional (21) can achieve its 

absolute minimum under the constraint (20). To find 

the optimal control U  that minimizes the functional 

A , we need to solve the equation  

2

0 02

0

1 
     

 
U z G

L
 

in the domain   with the boundary condition  

0 0

z . 

The initial conditions for streamfunction 
0  are 

used to calculate the function 0G .  

It is known [20] that planetary-scale waves in the 

atmosphere propagate westward relative to the mean 

quasi-zonal flow, so that it is possible for them to be 

stationary (with respect to the surface) in a westerly 

atmospheric flow. If the optimal control objective is 

to achieve the stationarity of these waves by 

manipulating the lower boundary vertical velocity 

0 , i.e. 

 
0

0 0


   
t t

z t , 

then the control U  is calculated as 

0U G  

in the domain    . 

At first glance the results obtained seem 

almost obvious. However, in this paper we 

rigorously prove the existence of absolute extremum 

of the cost functional (21) under the constraint (22). 

Note that if various constraints are imposed on the 

control variable U , then the cost functional (21) 

may not achieve its absolute extremum, and then the 

expression for calculating the control variable U  is 

not so obvious. 

 

 

7 Conclusion 
Global warming and its potential negative impacts 

on human society and natural ecosystems 

necessitate the development of methods for 

manipulation and control of the state and dynamics 

of the earth’s climate system and its components. 

However, the problem of control of geophysical 

processes and earth’s climate system as a whole is 

extremely difficult and multidisciplinary, which 
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requires the consideration of physical, technical, 

ethical and legal aspects and limitations. 

This paper provides a basis for further research 

in the field of geophysical cybernetics that is a new 

research area of a self-regulating cybernetic system 

in which the geophysical system represents the 

control object and the human society plays the role 

of controller. Interest in climate manipulation and 

weather modification will likely continue to grow. 

In this context, the development of a theoretical 

framework for the optimal control of the earth’s 

climate system seems as a problem of current 

interest. This paper lays the groundwork for further 

research in this area. In particular, the general 

formulation of the problem of optimal control of the 

geophysical system was considered, and the 

necessary optimality conditions were derived for the 

problem of optimal control of large-scale dynamics 

of the atmosphere.  
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